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Abstract. Integrable dynamical systems, namely those having as many independent conserved quantities
as freedoms, have all Lyapunov exponents equal to zero. Locally, the instantaneous or finite time Lyapunov
exponents are nonzero, but owing to a symmetry, their global averages vanish. When the system becomes
nonintegrable, this symmetry is broken. A parallel to this phenomenon occurs in mappings which derive
from quasiperiodic Schrödinger problems in 1–dimension. For values of the energy such that the eigenstate
is extended, the Lyapunov exponent is zero, while if the eigenstate is localized, the Lyapunov exponent
becomes negative. This occurs by a breaking of the quasiperiodic symmetry of local Lyapunov exponents,
and corresponds to a breaking of a symmetry of the wavefunction in extended and critical states.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Pq Numerical simulations
of chaotic models – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

The Lyapunov exponents (LEs) of a dynamical system
characterize the manner in which elementary volumes in
phase space evolve in time [1]. For an autonomous flow
specified by the set of coupled differential equations

Ẋ = F(X ), (X ≡ X1, . . . , Xk) (1)

trajectories are obtained by evolving a given set of initial
conditions X0. There are k Lyapunov exponents Λm,m =
1, 2, . . . , k which are the logarithms of the eigenvalues of
the matrix

O(X ) = lim
N→∞

[M(X , Nδt)TM(X , Nδt)]1/2Nδt, (2)

where [2]

M(X , Nδt) =
N−1∏

j=0

DF(X (jδt)), (3)

DF is the Jacobian matrix, δF(X )/δX and T denotes the
transpose.

The Lyapunov exponents Λ1 ≥ Λ2 ≥ . . . ≥ Λk

characterize the manner in which a k–dimensional par-
allelepiped evolves under the dynamics. Local (or fi-
nite time) Lyapunov exponents (LLE or FTLE), denoted
λm

N (X0),m = 1, 2, . . . , k are similarly defined for finite N
in equation (2). Note that the λj

N ’s explicitly depend on
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initial conditions, X0, (although this will not always be in-
dicated) while the asymptotic exponents, Λj ’s do not [3],
and

Λm = lim
N→∞

λm
N (X0), m = 1, 2 . . . , k. (4)

Finite–time LEs [4] offer a more detailed description of
local dynamics and can be of considerable use in assessing
the predictability of chaotic systems [5,6].

For discrete dynamical systems which are specified by
iterative mappings,

X (j + 1) = F(X (j)), (5)

the Lyapunov exponents can be computed by propagating
k-dimensional orthonormal vectors, êm,m = 1, . . . , k in
the tangent space, namely according to the dynamics

em
j = DF(X (j)) · êm

j−1. (6)

The vectors em
j when re-orthogonalized give the expan-

sion (or contraction) rates along the different directions
in phase space [7]. The FTLEs are, in this case,

λm
N =

1
N

N∑

j=1

ln ‖em
j ‖, m = 1, 2, . . . k (7)

and the spectrum of global LEs is obtained asymptotically
as (cf. Eq. (4)) Λm = limN→∞ λm

N ,m = 1, 2, . . . k.
The instantaneous Lyapunov exponent at the posi-

tion X (j) along the trajectory, also termed the stretch
exponent, is the quantity λm

1 (j). Regardless of whether a
Lyapunov exponent is positive, negative or zero, LLEs can
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be positive or negative along a trajectory. The asymptotic
value of the Lyapunov exponent thus depends on how the
expanding (or positive LLE) and contracting (or negative
LLE) regions are distributed along a trajectory. The distri-
butions of FTLEs in both chaotic and nonchaotic systems
have been extensively studied [5,6].

When is a Lyapunov exponent zero? What are the
implications of a Lyapunov exponent being zero? These
questions form the focus of the present paper, with spe-
cific application to nonintegrable Hamiltonian dynamical
systems and maps that derive from a discrete Schrödinger
equation.

For every quantity that is conserved in the dynami-
cal system, there is at least one LE that is zero [8]. In
Hamiltonian systems, conservation of the total phase vol-
ume implies that LEs come in pairs, so that each con-
served quantity corresponds to two LEs being zero. Also,
by Noether’s theorem [9], a symmetry in the dynamics
(for example invariance under time translation, say) also
implies a zero Lyapunov exponent.

In an arbitrary dynamical system it appears unusual
that all LEs can be zero. In general, this can occur in the
following ways:

1. All the local LE’s themselves are zero. This is a trivial
case.

2. Stationarity holds: the sum of all negative instanta-
neous exponents is equal to the sum of all positive
exponents.

3. Detailed balance holds: there is a pairwise cancellation
of the instantaneous stretch exponents, say λm

1 (i) =
−λm

1 (j) for some i, j.

In the next section we discuss Cases 2 and 3 above in
the context of several discrete quasiperiodic Schrödinger
equations. These are the most interesting since the can-
cellation of the positive and negative contributions to the
LE (See Eq. (2)) are exact, implying a symmetry in the
system. Note however, that this symmetry is present in
the tangent bundle rather than the phase space itself. In
Section 3, analogous phenomena in integrable and nonin-
tegrable Hamiltonian dynamical systems is studied, and
the parallels in the two situations are elaborated and dis-
cussed in the final Section 4.

2 Quasiperiodic Schrödinger problems

The nature of the eigenvalues and eigenfunctions of the
discrete Schrödinger equation,

ψn+1 + ψn−1 + Vnψn = Eψn (8)

where ψn is the wavefunction and Vn is the potential
at lattice site n has been of interest for the past few
decades [10,11]. If the potential Vn is periodic, then the
eigenstates are Bloch states; the allowed energies form
bands, and the wavefunctions are extended. When the
potential is a random function of the lattice site index,
then the spectrum is pure point, and the eigenfunctions
are localized: they extend over a finite number of lattice

sites, typically decaying exponentially from the maximum,
ψn ∼ ψ0 exp(−n/γ) [12].

Through the transformation xn = ψn−1/ψn, the above
discrete Schrödinger equation becomes an equivalent iter-
ative mapping [13–15],

xn+1 =
−1

xn − E + Vn
· (9)

The potential term transforms into a “time–dependent”
driving term. The linearity of the Schrödinger equation
results in the invertibility of the mapping. It is easy to see
that the Lyapunov exponent [16] of the above iterative
map,

Λ = lim
n→∞

1
n

n∑

i=1

lnx2
i+1 (10)

is essentially the inverse of the localization length, Λ =
−2/γ, localized states of equation (8) corresponding to
attractors of equation (9) with negative Lyapunov expo-
nents. Extended and critical states have infinite localiza-
tion length, and therefore Λ = 0.

A quasiperiodic potential is in some sense intermediate
between periodic and random, and the nature of eigen-
states of the system now depends on the values of param-
eters. In particular, if Vn = 2ε cos(2πnω+φ0) with ω an ir-
rational number, equation (8) is known as the Harper [17]
or “almost Mathieu” [18] equation, and from a large body
of work it is known that all states are extended below
ε = 1, all states are localized above ε = 1 and at ε = 1, all
states are critical, namely they are localized as a power–
law rather than exponentially.

In terms of the Lyapunov exponent of the correspond-
ing iterative mapping, namely equation (9) with this Vn,
the Lyapunov exponent is strictly zero below ε = 1. Above
this critical value, there are simple arguments to sug-
gest that the dynamics is nontrivial, and that the attrac-
tors of this system are fractal [13]. At the same time,
given the quasiperiodic nature of the dynamics, there
are no periodic orbits and therefore, in general the sys-
tem never recurs exactly. Thus, the result of a zero value
for the Lyapunov exponent must follow from generalized
symmetries.

2.1 Symmetry breaking in the localization transition

The metal–insulator transition in this system can be di-
rectly examined by following an eigenvalue as a function
of the coupling parameter, ε. Shown in Figure 1 is the
Lyapunov exponent for E = 0. The irrational number ω
is chosen to be the golden mean ratio, (

√
5−1)/2 (though

any Diophantine irrational number will show identical be-
haviour). The state goes from being extended for ε < 1 to
critical at ε = 1, and is localized for ε > 1, and thus the
localization transition can be viewed as a bifurcation, and
in previous work [14] we have shown that this transition
is to a strange nonchaotic attractor [19,20].
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Fig. 1. Lyapunov exponent versus ε in the Harper map, equa-
tion (9) with Vn = 2ε cos 2πωn+φ0. At ε = 1 there is a metal–
insulator transition from a critical state to an exponentially
localized state.

Fig. 2. Return map for the stretch exponent in the Harper
system for (a) a critical state, E = 0, ε = 1, which has the
symmetry, (b) a localized state, E = 0, ε = 1.5 which has no
symmetry and results in a negative Lyapunov exponent.

The fact that the Lyapunov exponent, equation (10),
is zero is nontrivial, and is a consequence of the analog
of the KAM theory [10]. Here it can be seen as a conse-
quence of a symmetry in the Harper map. Examination
of the stretch exponents for the map, equation (9), which
are λ1

1(xi) = yi = lnx2
i+1 shows that there is an exact

quasiperiodic symmetry. The return map, a plot of yi ver-
sus yi+1 is shown in Figure 2. Up till ε = 1 (see Fig. 1)
the return map for the stretch exponent is symmetric with
respect to the line y = −x, namely the discrete symmetry
(x, y) → (−y,−x). Because of the quasiperiodicity there
are no exactly symmetrically placed points except in the
asymptotic limit. (It should be added that apart from
E = 0, other eigenvalues are known only to finite (ma-
chine) precision; our numerical results are strongly sug-
gestive of the exact symmetry but other than for E = 0,
this is difficult to verify with high precision.)

The nature of this symmetry that gives rise to a zero
value of the Lyapunov exponent for extended and critical
states relates to a property of the wavefunctions. From

Figure 2a, it is clear that along an orbit, every pair of
stretch exponents, (yi, yi+1) is approximately matched by
another pair (yj , yj+1) such that yi ≈ −yj+1 and yi+1 ≈
−yj. From the definition of the stretch exponent it is easy
to see that this translates into a condition on the ratio
of the wavefunction at two sets of sites. Explicitly, if the
wavefunction at three neighbouring sites are in the ratio

ψi−1 : ψi : ψi+1 = a : b : c

then there is another triple of sites such that the wave-
function is

ψj−1 : ψj : ψj+1 ≈ c : b : a.

The relation between i and j depends on the nature of the
irrational frequency ω.

Indeed, this symmetry is present in the FTLEs for any
N as well, so that the constraint is actually stronger: the
ratio of the wavefunctions at any N + 1 consecutive sites
is reversed elsewhere in the infinite chain, namely

ψj : ψj+1 . . . : ψj+N ≈ ψi+N : . . . ψi+1 : ψi

and because of the quasiperiodicity, this must happen in-
finitely often.

In the localized state, the above symmetry of the
stretch exponents is broken; see Figure 2b. Wavefunctions
now decay exponentially, although there is evidence of
fractal fluctuations about the exponentially decaying en-
velope.

2.2 Critical localization

This constraint on the nature of the wavefunction ampli-
tudes seems to be more general than in the case of the
Harper system alone, and applies to a number of other
quasiperiodic and aperiodic potentials which support crit-
ically (power–law) localized states. Apart from the Harper
equation and its generalizations [21], some of these are the
Kohmoto model [22] and potentials Vn that derive from
abstract quasiperiodic or aperiodic sequences such as the
Fibonacci, Thue–Morse or period doubling sequences [23].

For all these systems maps (cf. Eq. (9)) can be de-
rived, and whenever E is an eigenvalue of the correspond-
ing equation (8), then the Lyapunov exponent is again
exactly zero. Examination of the return map for the in-
stantaneous LLE in such cases shows, just as in the case
of the Harper system, there is an exact quasiperiodic sym-
metry that causes the LE to vanish, both for the Fibonacci
chain, which is quasiperiodic, (Fig. 3a) as well as for the
Thue–Morse chain, which is aperiodic (Fig. 3b). The same
holds for any finite time LE as well.

Thus, in the above set of examples, the Lyapunov ex-
ponent being zero implies a quasiperiodic symmetry, a
consequence of which is the extended or weakly localized
nature of the wavefunction. The transition to exponen-
tial localization is accompanied by the breaking of this
symmetry, which gives nonzero values of the Lyapunov
exponent.



342 The European Physical Journal B

Fig. 3. Return map for the stretch exponent for critically
localized states in (a) the Fibonacci chain and (b) the Thue–
Morse chain.

3 Hamiltonian systems

We now examine a parallel situation in the case of con-
servative Hamiltonian flows. An autonomous Hamiltonian
H(q,p) with k freedoms has the 2k equations of motion
(X ≡ q1, . . . , qk, p1, . . . , pk)

Ẋ = J
∂H
∂X , (11)

in the standard symplectic notation [9]. The LEs must
sum to zero both globally as well as locally, namely

2k∑

i=1

Λi = 0 =
2k∑

i=1

λi
1(t) for any time t (12)

(the time dependence of the λi
1’s is indicated, and is equiv-

alent to evaluating them at each point in the phase space
along an orbit). The symplectic structure gives the pair-
ing rule for the LEs [8], Λi + Λj = 0, λi

1(t) + λj
1(t) = 0

for j = 2k + 1 − i. This together with the fact that time-
translation invariance gives a zero LE, implies that the
spectrum of LEs can be ordered as

Λ1≥Λ2≥ . . .≥Λk =0=Λk+1≥Λk+2≥ . . .≥Λ2k =−Λ1.
(13)

Equations (12, 13) hold for all Hamiltonian systems
whether integrable or not. However, if the system is inte-
grable, then all the Λ’s are individually zero; this can only
happen if there is a symmetry in the stretch exponents
causing them to cancel exactly, namely λi

1(τ) = −λi
1(τ ′)

for some τ, τ ′. This is equivalent to a detailed balance con-
dition.

For integrable as well as nonintegrable systems wherein
the KAM theory applies, so long as the motion is confined
to KAM tori [24], this detailed balance must hold in order
to give vanishing Lyapunov exponents. For nonintegrable

Fig. 4. Instantaneous Lyapunov exponents for a regu-
lar (torus) orbit of the Henon Heiles system.

�4
i=1 Λi =

�4
i=1 λi

1(t) = 0 and further, all the stretch exponents have the
detailed balance quasiperiodic symmetry by which the global
LEs are all zero.

dynamics, the symmetry is broken, leading to a nonzero
average for some of the LEs.

A specific example is provided by the extensively stud-
ied Hénon-Heiles Hamiltonian [25]

H(q,p) =
1
2
(p2

1 + p2
2 + q21 + q22) + q22q1 −

1
3
q31 . (14)

In this system the nature of the motion depends on ini-
tial conditions since the system is quasi-integrable. So
long as the motion is on tori, then by the KAM theo-
rem, the dynamics is effectively integrable and all Λ’s are
zero. The dynamics is quasiperiodic and the stretch ex-
ponents are nonconstant, so that the global average being
zero results from a cancellation of terms λi

1(τ) = −λi
1(τ

′)
for some τ, τ ′. Further, these are symmetric and paired
(λ1

1 = −λ4
1, λ

2
1 = −λ3

1; see Fig. 4). Indeed, a plot of λi
1(t)

versus λi
1(t + δt) namely a return map analogous to Fig-

ures 2 or 3 is symmetric with respect to the line y = −x,
giving direct evidence of the detailed balance condition.

This detailed balance is lost when the motion is
chaotic; there is no underlying torus, and although the
pairing holds since all exponents should sum to zero
(Fig. 5), the stretch exponents λ1

1 and λ4
1 are no longer

symmetric, having nonzero averages. Note that Λ2 = Λ3 =
0 as in Figure 4, and for these exponents, the detailed bal-
ance condition continues to hold.

From the viewpoint of local Lyapunov exponents,
therefore, the break-up of KAM tori and the transition
from regular motion to chaos [16,24] is a symmetry–
breaking transition as well.

4 Summary

The transition from regular to chaotic dynamics and the
transition from extended to localized states, when exam-
ined in terms of the behaviour of Lyapunov exponents,
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Fig. 5. As in Figure 4 for a chaotic orbit. The global Lyapunov
exponents sum to zero, but the detailed balance symmetry of
the local exponents λ1

1 and λ4
1 is broken, leading to a nonzero

value for Λ1 and Λ4. Λ2 and Λ3 are zero since λ2
1 and λ3

1 have
the symmetry.

show common features. In either case, there is a loss of a
specific symmetry in the stretch (or local Lyapunov) expo-
nents, resulting in a global Lyapunov exponent becoming
nonzero.

In Hamiltonian dynamical systems, the conservation
of phase–space volume requires that Lyapunov exponents
come in pairs, each pair summing to zero. Integrability
requires that each Lyapunov exponent is zero, and this
happens by a symmetry in the local Lyapunov exponent
which results in a zero average. When a given KAM torus
breaks up, this transition from regular to chaotic dynam-
ics, is signaled by a loss of this symmetry of instantaneous
Lyapunov exponents, leading to a nonzero value for the
averages.

The same loss of symmetry in the instantaneous
Lyapunov exponent is seen in the dynamics of a map
which is equivalent to a discrete quasiperiodic Schrödinger
equation when one examines the transition from extended
to localized states. The implications of the symmetry is
that in extended and critically localized states, the ampli-
tude ratio of wave–functions at (an arbitrary number of)
N neighboring sites is approximately mirrored in reverse
order at an infinite number of sets of other N neighboring
sites. This poses a severe constraint on the wavefunction
amplitudes, consistent with the lack of (or weak) decay of
amplitude in extended (or critical) states.

The present paper is an initial step in examining
the similarities of these two different transition scenarios.
Some of the related issues which we hope to explore in fu-
ture work are an examination of local Lyapunov exponents
in the transition from KAM tori to cantori [26], and the
generality of symmetry–breaking in the localization tran-
sition in other models displaying critical localization [23].
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